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Abstract
We analyse the effect of a weak noise on the Hamiltonian transport from the
analytical and numerical viewpoint. A solvable model, the noisy rotator, is
proposed to illustrate the basic phenomena. In the absence of noise, the phase
space evolution is a shear flow, whose angular correlations decay following a
power law, which depends on the smoothness of the initial action distribution.
If the action has a fluctuating component, given by a Wiener process, then
the angular correlations decay exponentially according to e−ε2t3/6 or faster,
where ε is the noise amplitude. The echo effect is well suited to investigate
the competition between the decorrelation due to filamentation and noise. The
noisy rotator model allows an exhaustive analytical investigation of the process
for a wide class of initial conditions and a generic disturbance. The echo time is
proportional to the delay τ of the disturbance and its amplitude is proportional
to λτ , where λ is the amplitude of the disturbance. The noise reduces the echo
amplitude by e−cε2τ 3

, where c depends on the Fourier components of the initial
angular distribution, and of the disturbance applied at time τ . The analytical
results, derived in the limit λ → 0, τ → ∞, with λτ finite and sufficiently small
to justify a first-order expansion, are checked numerically. For more realistic
models the analytical procedure would provide qualitative results and scaling
laws. Quantitative results are obtained by solving the Fokker–Planck equation
with a numerical scheme based on splitting: back propagation and biquadratic
interpolation for the integrable part, implicit finite difference scheme for
the noise component. The application to a noisy pendulum describing the
longitudinal dynamics in a particle accelerator is considered, and we determine
the value of the noise amplitude ε, below which the echo cannot be detected.
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Introduction

The integrable Hamiltonian systems with a weak noise are physically relevant, especially for
beam dynamics. Indeed for proton machines the debunching effects of a small noise may
cause the formation of a coasting beam. The accelerator physicists have pointed out the need
of developing diagnostic tools to measure the noise level in the beam. The echo effect, first
discovered in spin systems [1] and subsequently observed in solids [2] and in plasmas [3–6],
is a signature of coherence in a filamented phase space distribution and it is very sensitive to
the noise. Therefore, it can be used to detect the presence of noise in a beam and to measure
its level if the relation with the echo amplitude is known. The use of the echo effect to analyse
the transverse motion of the beam in a circular accelerator was first proposed by Stupakov
[7, 8]. The suggested procedure consists in displacing a Gaussian beam, invariant over one
turn, with a dipole kick, and to apply a quadrupole kick at time τ ; the echo signal appears at
time 2τ in this case. The measurement of echo signals to investigate the longitudinal motion
of the beam was also proposed and experimentally achieved [9, 10]. The decay law of the echo
amplitude in the presence of noise was established [11]. Finally, the echo was proposed to
measure the diffusive effects induced by space charge collective phenomena or by intrabeam
scattering [12, 13]. An analysis of the echo in the general framework of dynamical systems
has also been proposed [14].

We analyse the rotator model to investigate the transport in a phase space and the
dependence of the echo signal on the smoothness of the initial condition. The frequency
is a linear function of the action and its variation causes the filamentation of any initial angle-
dependent distribution. This is a sort of local weak mixing and the decay of correlations
follows a power law with an exponent which depends on the smoothness of the initial action
distribution. However, if at time τ , large enough to reach an almost isotropic distribution,
we apply a disturbance of small amplitude λ, then at a later time a new anisotropic signal
reappears and its amplitude is proportional to λτ times the frequency variation rate. This is the
echo of the initial signal, which can be observed because at time τ some angular correlation
still exists. If λ is small enough, the secondary impulse anisotropy can hardly be observed
and in any case it dies out following a power law in t − τ . After some time proportional to τ

an echo signal is produced and its amplitude is comparable with the initial distribution, if λτ

times the frequency variation rate is of order 1.
We consider a noisy rotator whose action fluctuates according to a Wiener process. As a

consequence the angle fluctuates according to the time integral of a Wiener process. The mean
square deviation of the action and angle variables have a linear and a cubic growth in time,
respectively. Since the angle is defined on the one torus T

1, its distribution becomes uniform,
exponentially fast, more precisely as e−ε2t3/6 at least, where ε denotes the noise amplitude.
This explains why the residual coherence, which is preserved by the slow mixing process due
to filamentation, is wiped out by the presence of noise when its amplitude grows.

For the rotator model we compute the exact trigonometric moments of a wide class of
distributions both in the deterministic and noisy case. An approximate analytical solution is
obtained for the echo when the amplitude of the disturbance is small. Its validity is checked
by comparing its trigonometric moments with the moments of the exact distribution, which
satisfies the Liouville equation in the deterministic case, the Fokker–Planck equation [16] in
the noisy case.

Even though the noisy rotator model captures the qualitative features of generic integrable
Hamiltonians with a small stochastic perturbation, numerical procedures are needed for the
quantitative analysis of realistic physical models. The numerical integration of the Fokker–
Planck equation associated with a Hamiltonian system with small noise is a non-trivial task,
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since the dynamics is initially dominated by the Lagrangian transport, and a high accuracy
is needed to resolve the phase space filamentated distribution. The Monte Carlo method
(Langevin evolution of N initial randomly generated points) is simple to use, but requires
large statistics to resolve small scales �, since the relative error on the distribution is of order
1/(�

√
N), (working on a unit box partitioned into cells of side �). Resolving a 10−3 scale

is already so expensive that it is convenient to solve the Fokker–Planck equation by using a
splitting method based on the Hamiltonian transport, followed by the computation of the noise
induced diffusion at every time step. The transport is achieved by the back propagation of the
distribution function, which solves the Liouville equation. A symplectic integration is used
to approximate the exact flow, and the biquadratic interpolation, suggested by Warnock and
Ellison [15], is used to evaluate the distribution at the grid points. This is a good compromise
between accuracy and computational complexity. The noise induced diffusion is determined
by a stable solver of the Fokker–Planck equation. An alternative approach is provided by
the stochastic Liouville equation [17], which consists in computing the density function at
time t for a given initial distribution and a given realization of the noise. The standard p.d.f.
(probability density function) solution of the Fokker–Planck equation is then obtained by
averaging the distributions obtained for different realizations. If we consider a limited number
of points in a small region, this method provides a very accurate p.d.f. since we can choose a
large number N of realizations of the noise. We recall that while solving the Fokker–Planck
equation numerically, the p.d.f. has to be computed at all the grid points.

As an application of physical interest we consider a pendulum-like Hamiltonian describing
the RF cavities of HERA-p [20]. The Monte Carlo solution is compared with the p.d.f.
obtained on the grid from the splitting method and with the p.d.f. computed as the average
of the density satisfying the stochastic Liouville equation. The second method appears to
provide an adequate global description of the problem on the whole phase space, whereas the
last one can be used as a magnifying glass to explore small regions, otherwise unaccessible,
due to insufficient resolution.

The plan of the paper is as follows. In section 1 we consider the rotator model and a class
of invariant initial conditions. In section 2 we examine the decoherence of a distribution due
to filamentation and its time scale tdec. In section 3 we examine the echo effect triggered by a
small disturbance at time τ � tdec. In section 4 we consider an integrable Hamiltonian with a
generic noise showing that it can be reduced to a rotator with additive noise by an averaging
method. In section 5 we analyse the decoherence of an anisotropic distribution in the presence
of noise. In section 6 we consider the echo effect in the presence of noise and show that the
trigonometric moments of the distribution are the same as in the deterministic case up to an
exponentially time-decreasing factor. In section 7 we compare three numerical methods to
determine the transport in a phase space in the presence of noise: the Monte Carlo method,
the stochastic Liouville equation and the Fokker–Planck equation. In section 8 we discuss an
application to the RF cavities of HERA-p.

1. The rotator model and the initial distributions

The system we consider is any integrable one-dimensional Hamiltonian model H0(J ) defined
on the cylinder T × R. This is the case of the rotator, where J is proportional to the
angular momentum which can take positive or negative values. The dynamics of anharmonic
oscillators can also be described by a Hamiltonian H0(J ), but the action variable is defined
on the positive real axis R+. Indeed the Hamiltonian in normal coordinates X,P is given by
H0
(

P 2+X2

2

)
and becomes H0(J ) after the transformation to the action-angle coordinates �,
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Figure 1. Left: plot of the function y = ϕn(x) for n = 1, 2, 3, 4, 5. Right: plot of the function
y = αϕ3(α(x − 1)) for α = 1, 2, 3, 4, 5.

J given by X = √
2J cos � and P = −√

2J sin �. The transformation is invertible, since
the Jacobian is 1, but has a square root singularity at J = 0. The use of complexified variables
allows us to overcome this restriction, but this extension is beyond the scope of this paper.

Without loss of generality we consider the Hamiltonian

H0(J ) = ω0J + ω1
J 2

2
. (1)

Any initial distribution depending only on the action is invariant. We consider a family
of normalized action distributions

	(J ) = αϕn(α(J − J∗)) ϕn(x) =



nn+1

n!
e−nxxnϑ(x) if n � 1

e−xϑ(x) if n = 0,

(2)

and by ϑ we denote the Heaviside step function. The functions ϕn(x) are discontinuous
for n = 0, whereas for n � 1 they are continuous with their derivatives up to order n − 1.
An action distribution for the anharmonic oscillator is represented by (2) with J∗ = 0. For
completeness we consider a real analytic distribution whose support is R, and the Gaussian

	(J ) = exp
(− (J−J∗)2

2σ 2

)
√

2πσ 2
(3)

is the most natural candidate. We note that the distributions with support on R are appropriate
for the rotator model, where J can take negative values, whereas for the oscillators the support
is on R+. The functions ϕn(x) are normalized and have a maximum at x = 1 for n � 1.
They are not symmetric with respect to the maximum, see figure 1, but the symmetry is
asymptotically reached in the n → ∞ limit, where the Dirac distribution δ(x) is obtained.
The mean value 〈x〉 = 1 + n−1 and the variance σ ≡ 〈(x − 〈x〉)2〉1/2 = n−1/2(1 + n−1)1/2

suggest that the asymmetry is of order n−1, the signal width of order n−1/2. The half widths
σ± are precisely defined as the displacements from x = 1 such that the signal decrease is e−1/2

namely ϕn(1 ± σ±) = e−1/2ϕn(1). From this condition we obtain the following equation:
log(1 ± σ±) ∓ σ± = −(2n)−1, whose solution reads σ± = n−1/2 + O(n−1). For a Gaussian
signal (3) the half widths are equal to σ .

The initial action distribution 	(J ) defined by (2) has support on [J∗, +∞[, a maximum
at J = J∗ + α−1, a half width σ = α−1n−1/2 and its limit for n → ∞ or α → ∞ is δ(J − J∗).
Our choice of initial action distributions covering the entire regularity spectrum is not a matter
of mathematical sophistication, but rather a necessary tool to explore the time development of
the decoherence process when an angular dependence is introduced.
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2. Decoherence

In order to investigate the decoherence effects we consider an initial angle-dependent
distribution

ρ0(�, J ) = 	(J )(f0 + f (�)) f0 = 1

2π
, (4)

where f is a periodic function with zero mean such that f0 + f (�) > 0.
In the physically relevant case of a beam in the smooth focusing approximation, we

have a nonlinear oscillator Hamiltonian and an invariant initial condition ρ0(X0, P0) =
(2π)−1	

(X2
0+P 2

0
2

)
. The angle dependence is introduced by translating the distribution with

a dipole kick corresponding to the map X = X0, P = P0 + ε. After the kick the distribution
written in action-angle variables defined by X = √

2J cos �,P = −√
2J sin � explicitly

reads

ρ0(�, J ) = (2π)−1[	(J ) + ε(2J )1/2	′(J ) sin �] + O(ε2). (5)

For a Gaussian beam in (X, P ) coordinates we have 	(J ) = σ−2ϕ0(J/σ 2). The major
difference with respect to (4) is the presence of the derivative 	′(J ), which lowers the
smoothness from Cn−1 to Cn−2. To avoid unessential complications we shall always refer to
the initial condition (4) from now on. The case of a beam whose displacement ε due to a
dipole kick is comparable or large with respect to its width, σ deserves a special analytical
treatment and will not be considered. The evolution at time t is given by

ρ(�, J, t) ≡ ρ0(�0, J0) = ρ0(� − �(J )t, J ) �(J ) = ω0 + ω1J. (6)

The filamentation effect, whose final result is the destruction of the signal coherence, can be
observed by averaging over J at time t. To this end we expand the angular distribution into
a Fourier series and denote by ρ1(�, t) its average with respect to J , by ρ2(J, t) its average
with respect to �:

ρ1(�, t) = f0 +
∑
k �=0

fk eik(�−ω0t)

∫ +∞

−∞
	(J ) e−ikω1tJ dJ. (7)

The integral is the characteristic function 	̂ of the distribution evaluated at kω1t . If 	(J ) is
given by (2), changing the integration variable to x = α(J − J∗), we obtain for any n � 0

ρ1(�, t) = f0 +
∑
k �=0

fk

eik(�−�(J∗)t)(
1 + i kω1t

αn+

)n+1 n+ =
{
n if n � 1
1 if n = 0.

(8)

If the initial action distribution is a Gaussian (3), the decoherence is exponentially fast

ρ1(�, t) = f0 +
∑
k �=0

fk eik(�−�(J∗)t) e−k2ω2
1σ

2t2/2. (9)

The decoherence time of the distribution (4) is defined by

tdec = 1

|ω1|σ , (10)

where σ is the half width of the signal. The averages of eik�, defined by

〈eik�〉(t) =
∫ +∞

−∞
dJ

∫ 2π

0
d� eik�ρ(�, J, t) =

∫ 2π

0
d� eik�ρ1(�, t), (11)
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show a decay rate λ(k) = |〈eik�〉(tdec)|/|〈eik�〉(0)| which increases with n and |k|. For the
distribution of class Cn−1 defined by (2), whose width is given by σ = 1/(α

√
n+), we have

tdec = α
√

n+/ω1 so that

λ(k) =
(

1 +
k2

n+

)− n+1
2

n � 1, (12)

whereas the decay for the Gaussian signal (3) is

λ(k) = e−k2/2. (13)

Keeping constant the width σ of the signal, the power law decay for the distribution of class
Cn−1 has an exponential limit for n → ∞, the same as for the real analytic signal of the
Gaussian case.

3. The echo effect

We consider the initially perturbed distribution which evolves up to some time τ at which a
new disturbance is applied. We choose τ � tdec so that the initial beam has filamented and
become almost uniform with respect to the angle. One would expect that at times t � τ + tdec

an almost complete decoherence has occurred once more. This is not in general the case since
after some time a new signal with angular anisotropy reappears. The amplitude of this new
signal can be appreciable even though the disturbance at time τ is quite small. This remarkable
phenomenon called echo, shows the deep difference between a true stochastic decoherence of
the angular variable and the decoherence due to filamentation. We choose a generic kick K
whose inverse is exactly the standard map (�0, J0) = K−1(�, J ), where

J0 = J + λg(�) �0 = � + J + λg(�). (14)

For an initial distribution given by (4) the phase space density at time t after the kick given at
time τ reads

ρ(�, J, t) = ρ0(J0, θ0) = ρ0(S−τK
−1Sτ−t (�, J )), (15)

where by St we denote the flow of the Hamiltonian H. We evaluate the distribution in three
steps:

ρ(�, J, t) = ρ
II
(Sτ−t (�, J )) ρ

II
(�, J ) = ρI (K

−1(�, J ))

ρ
I
(�, J ) = ρ0(S−τ (�, J )),

(16)

so that

ρ
II
(�, J ) = ρ0(� + J + λg(�) − �(J + λg(�))τ, J + λg(�)). (17)

Assuming that λ is small we perform a first-order expansion:

ρ
II
(�, J ) = ρ0(� + J − τ�(J ), J ) +

∂ρ0

∂J
(� + J − �(J ), J )λg(�)

− ∂ρ0

∂�
(� + J − τ�(J ), J )τ�′(J )λg(�) +

∂ρ0

∂�
(� + J − τ�(J ), J )λg(�).

(18)

The crucial hypothesis is that τ � tdec so that the first term on the rhs has lost coherence and
its average over J is f0 up to negligible corrections. Of the remaining three terms the second
one is by far the largest if we assume that

τ |�′(J )| = τ |ω1| � 1. (19)
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We recall that the slowest decay of correlations ∝ t−1 occurs for a discontinuous initial action
distribution given by equation (2) for n = 0 or by the characteristic function of an interval
|J − J∗| � σ . The approximation scheme we consider requires λ very small, ω1τ large but
such that ω1τλ is still small so that we can drop the terms of order λ retaining only the terms
of order ω1λτ . We note that the condition τ � tdec corresponds to τ |ω1| � 1/σ . As a
consequence if the action distribution has a narrow peak of half width σ < 1 the condition
τ � tdec implies that τ |ω1| � 1. Retaining only the first and the third terms in (18) we finally
have

ρ(�, J, t)  ρ0(� + J − τ� − (t − τ)�(J ), J )

− ∂ρ0

∂�
(� + J − τ� − (t − τ)�, J )ω1τλg(� − (t − τ)�)

= ρ0(� + J − t�, J ) − ω1λτ	(J )f ′(� + J − t�)g(� − (t − τ)�). (20)

The final step consists in computing the average of the density with respect to J . The
computation of the phase space average of any function of the angle is then straightforward.
In order to avoid writing down a double series, we assume the initial angular anisotropy and
the kick at time τ to have a single Fourier component:

f (�) = sin(��) g(�) = sin(m�). (21)

Using the trigonometric identity

f ′g = �

2
sin((m + �)� + �J − [(m + �)t − mτ ]�)

+
�

2
sin((m − �)�− �J − [(m − �)t − mτ ]�) (22)

and choosing as an initial action distribution the smooth function 	(J ) given by (2) after a
straightforward integration we find for t > τ � tdec

ρ1(�, t)  1

2π
− �ω1

λτ

2

× Im


ei[(m+�)�+�J∗−�(J∗)((m+�)t−mτ)](

1 + iω1[(m+�)t−mτ ]−�

αn+

)n+1 +
ei[(m−�)�−�J∗−�(J∗)((m−�)t−mτ)](

1 + iω1[(m−�)t−mτ ]+�

αn+

)n+1


 , (23)

where we have replaced the J projection of ρ0(� + J − �t, J ), given by (8), with its constant
term f0 = (2π)−1, since the remaining terms are negligible for t � tdec. The standard case
m = 2, � = 1 is the analogue of the initial dipolar kick followed by a quadrupolar kick at time
τ ; in this case the echo time is 2τ . Having an initial signal whose amplitude is of order 1, the
amplitude of the echo signal is of order ω1λτ . If this product is of order 1, our approximation
(20) gives an echo signal qualitatively correct as shown by figure 2, where this is compared
with a numerically exact result. If ω1λτ � 1 the approximation (20) becomes quantitatively
accurate. We observe that the echo signal is given by the second term in (23) since for t = techo,
where

techo = m

m − �
τ, (24)

the denominator becomes of order 1. The denominator of the first term in (23) increases (in
absolute value) with t having its minimum at t = τ +0, whose value is ∼ (

�τn
−1/2
+

/
tdec

)n+1 �
1. The denominator of the second term in (23) is comparable at t = τ + 0, but decreases

reaching at t = techo a minimum ∼ (
1 + �2α−2n−2

+

) n+1
2 = (

1 + �2σ 2
/
n+ω

2
1

) n+1
2 , which is of

order 1 unless the initial distribution is broad σ � 1. The echo occurs only if m > �, and we
note that techo = 2τ if m = 2�, techo → τ if m grows keeping � fixed, whereas techo � τ if m
grows keeping m − � fixed.



11424 G Turchetti et al

3.1. Anharmonic oscillators and quadrupole kick

The echo effect in beam dynamics is observed by creating an anisotropic initial distribution
with a dipole kick and by applying a subsequent quadrupole kick, which is similar to the
standard map kick, once the transformation to action-angle variables is made, provided the
amplitude is small. The quadrupole kick X = X0, P = P0 − λX in action-angle coordinates
becomes

J = J0(1 + λ sin(2�0) + λ2 cos2 �0) tan � = λ + tan �0. (25)

At first order in λ the transformation is easily inverted and we obtain

�0 = � − λ

2
(cos 2� + 1) + O(λ2) J0 = J (1 − λ sin(2�)) + O(λ2). (26)

Using this approximation the previous formulae for the echo apply up to minor straightforward
changes, we do not report. To invert the transformation exactly we write J = J0(1 + f (�))

after expressing cos2 �0, sin 2�0 as a function of tan � and introduce the generating function
F3(�, J0) = −J0(� + F(�)), where F(�) = ∫ �

0 f (θ) dθ . The desired relation is
�0 = − ∂F3

∂J0
= � + F(�).

3.2. Numerical results

We consider an anisotropic initial distribution given by (2) with J∗ = 0, α = 1 and more
specifically ρ0(�, J ) = ϕn(J )(1 + sin �)(2π)−1, whose time evolution is governed by the
rotator Hamiltonian (1) with ω0 = 1, ω1 = 0.2. The width of the distribution is σ = (n+)

−1/2

and according to (10) the decoherence time is tdec = 5(n+)
1/2. The numerically exact result

is compared with the approximation (23) for a standard map kick g(�) = sin(2�) at time
τ . The action integrated density ρ1(�, t) has two Fourier components ei�, which exhibits the
echo signal, and e3i� which does not. We quote the average of sin �, which, up to a factor
1/2, is just the amplitude of sin � in the expression of ρ1(�, t) given by equation (23) for
� = 1,m = 2, α = 1 and J∗ = 0,�(J∗) = ω0. The result explicitly reads

〈sin �〉 = −1

4
ω1λτ

cos(ω0(t − 2τ) + φ(t))[
1 +

(
ω1(t−2τ)+1

n+

)2] n+1
2

, (27)

where the phase φ(t) is given by

φ(t) = (n + 1) arctan

(
ω1(t − 2τ) + 1

n+

)
. (28)

In figure 2 we show, for an initial signal with n = 3, the decoherence effect by plotting
〈sin �〉 as a function of time and the echo triggered by the standard map kick of amplitude
λ = 0.1 at time τ = 100. The expansion parameter is not small λω1τ = 2, and consequently
the agreement between the exact and the perturbative results is correct within 50% as shown by
the figure, even though the shape of the echo signal is the same. Decreasing the perturbation
parameter to λ = 0.02, the difference between the exact and the perturbative results of the
echo signal can hardly be detected within the graphics resolution, as shown by figure 3 (left).

4. The Hamiltonian with noise

We consider the rotator model with a small stochastic perturbation in order to examine how the
decoherence due to the noise affects the echo signal. The theory developed for a multiplicative
noise is applicable to the standard beam dynamics case: indeed an additive noise in Cartesian
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Figure 2. Left: average of sin � with respect to the phase space density ρ(�, J ; t) corresponding
to a smooth initial distribution ρ0(�, J ) = ϕ3(J )(1+cos �)/(2π) and the flow associated with the
rotator Hamiltonian (1) with ω0 = 1, ω1 = 0.2. The decoherence time is tdec  8.66. The right
panel shows the echo effect for a standard map kick (14) of amplitude λ = 0.1 and g(�) = sin(2�)

at time τ = 100. The echo is observed at time 2τ . The blue line is the exact result whereas the red
line corresponds to the approximation (23) leading to (27). The vertical blue line is at t = 100,
the green line at t = 200. The exact result is obtained by (4 points repeated) Gaussian integration
with 64 points in � and 4096 points in J restricted to the interval [0, 10].

coordinates becomes multiplicative in action-angle coordinates. By using the averaging theory
we show that the generic problem can be reduced to a rotator with an additive noise, we can
solve analytically. We start with the Hamiltonian

H(�, J, t) = H0(J ) + εH1(�, J )ξ(t), (29)

where ξ(t) is a stochastic process that approximates the white noise in a suitable limit. The
stochastic Liouville equation for the fluctuating density ρ̂(�, J, t; ξ) corresponding to (29) is
given by

∂ρ̂

∂t
+ �(J )

∂ρ̂

∂�
+ εξ(t)[ρ̂, H1] = 0 �(J ) = ∂H0

∂J
, (30)

where by [A,H ]q,p = ∂A
∂q

∂H
∂p

− ∂A
∂p

∂H
∂q

, we denote the Poisson bracket. The average of
ρ̂ with respect to the process ξ is the p.d.f. ρ for the stochastic Hamiltonian flow. As
a consequence ρ = 〈ρ̂〉ξ satisfies the Fokker–Planck equation [16] corresponding to the
Stratonovich interpretation of the stochastic Hamilton’s equations. This equation, which can
be derived by computing the average via a Dyson expansion of the evolution operator for the
fluctuating density ρ̂ [17], explicitly reads

∂ρ

∂t
+ �

∂ρ

∂�
= ε2

2
[[ρ,H1],H1]. (31)

The angle diffusion process is faster than action diffusion: indeed the corresponding mean
square deviations are 〈(� − 〈�〉)2〉 ∼ ε2t3 and 〈(J − 〈J 〉)2〉 ∼ ε2t . As a consequence if
t � ε−2/3, the probability density ρ does no longer depend on � and satisfies an action
diffusion equation [18, 19]. Here we apply a different strategy by introducing a slow angle φ

and performing a time average on a time interval, very short with respect to ε−2/3, on which
this angle and the action do not vary appreciably. The slow angle is defined by

φ = � − �(J )t, (32)

and the new Hamiltonian reads

εĤ1(φ, J, t)ξ(t) = εH1(φ + �t, J )ξ(t). (33)

The probability distribution function ρ(φ, J, t) satisfies the Fokker–Planck equation

∂ρ

∂t
= ε2

2
[[ρ, Ĥ1], Ĥ1], (34)
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corresponding to the Stratonovich interpretation of the Langevin equation associated with
(33). In equation (34) [ , ] denotes the Poisson bracket. After some algebraic manipulations
equation (34) reads

∂ρ

∂τ
= 1

2


 ∂

∂φ

(
∂Ĥ1

∂J

)2
∂ρ

∂φ
− ∂

∂φ

∂Ĥ1

∂φ

∂Ĥ1

∂J

∂ρ

∂J
− ∂

∂J

∂Ĥ1

∂φ

∂Ĥ1

∂J

∂ρ

∂φ
+

∂

∂J

(
∂Ĥ1

∂φ

)2
∂ρ

∂J


 ,

(35)

where we have introduced the slow time τ = ε2t . Letting T be a time interval such that T � 1
and T � ε−α with α < 2/3, we make the a priori estimate that the distribution ρ remains
practically constant in the time interval [t, t + T ]. By applying an averaging principle we
obtain

1

T

∫ T

0

∂ρ

∂τ
(φ, J, τ + ε2s) ds = ρ(φ, J, τ + ε2T ) − ρ(φ, J, τ )

ε2T
 ∂ρ

∂τ
(φ, J, τ ). (36)

From the right-hand side of equation (35) we obtain the average diffusion operator. The first
term is

1

T

∫ T

0

(
∂Ĥ1

∂J

)2

ds  �′2t2 1

T

∫ T

0

(
∂H1

∂�
(φ + (t + s)�, J )

)2

ds  �′2t2

〈(
∂H1

∂�

)2
〉

�

,

(37)

where �′ = d�/dJ . Since ∂Ĥ1
∂J

= ∂H1
∂J

+ t�′(J ) ∂H1
∂�

, we consider only the second term which
is the leading one in the hypothesis t � T � 1 (this is correct if H1 is a C1 function).

In a similar way one computes

1

T

∫ T

0

∂Ĥ1

∂φ

∂Ĥ1

∂J
ds  �′t

〈(
∂H1

∂�

)2
〉

�

, (38)

and

1

T

∫ T

0

(
∂Ĥ1

∂�

)2

ds 
〈(

∂H1

∂�

)2
〉

�

. (39)

If we define

σ 2(J ) =
〈(

∂H1

∂�

)2
〉

�

, (40)

the average Fokker–Planck equation reads

∂ρ

∂t
= ε2

2

(
�′2t2σ 2 ∂2ρ

∂φ2
− ∂

∂φ
σ 2�′t

∂ρ

∂J
− ∂

∂J
σ 2�′t

∂ρ

∂φ
+

∂

∂J
σ 2 ∂ρ

∂J

)
. (41)

In the initial coordinates �, J the Fokker–Planck equation (41) reads

∂ρ

∂t
+ �(J )

∂ρ

∂�
= ε2

2

∂

∂J
σ 2(J )

∂ρ

∂J
, (42)

which is associated with the Langevin equation{
�̇ = �(J )

J̇ = εσ (J )ξ(t).
(43)

When we consider the echo effect, equation (41) has to be integrated for a time interval
comparable with the angular diffusion time scale t < (σε)−2/3. Since the variance of J is
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of order ε2t , we can approximate in probability the fundamental solution, corresponding to
initial condition J = J0 with the solution of the equation J̇ = εσ (J0)ξ(t). The corresponding
Fokker–Planck equation is therefore

∂ρ

∂t
+ �(J )

∂ρ

∂�
= ε2

2
σ 2(J0)

∂2ρ

∂J 2
. (44)

If H0(J ) is a convex function, without loss of generality we can choose �(J ) = ω0 + ω1J

which corresponds to the rotator model. We remark that the angular diffusion process
is faster than the action diffusion. Indeed the corresponding mean square deviations are
〈(J − J0)〉 = ε2t and 〈(� − �0)

2〉 = ε2t3, and this justifies the a priori assumption that
ρ(φ, J, t) remains almost constant in the time interval t, t + T .

4.1. The rotator with an additive noise

The Langevin equation (43) with σ(J0), whose Fokker–Planck equation is (44) with
� = ω0 + ω1J , corresponds to a rotator whose Hamiltonian is H0 = ω0J + 1

2ω1J
2 with

an additive noise. Translating the actions by ω0/ω1 and rescaling the Hamiltonian by ω−1
1

and time by ω1 leaves Hamilton’s equations invariant. Still denoting by ε the previous noise
amplitude multiplied by σ(J0)ω

−1/2
1 the noisy rotator Hamiltonian becomes

H = 1
2J 2 + εξ(t)H1(�) H1(�) = −� mod 2π. (45)

The corresponding stochastic Hamilton’s equations are

�̇ = J J̇ = εξ(t). (46)

We consider first the solutions defined on the covering space R
2, and subsequently wrap

around the corresponding solution onto the cylinder, defined as the product of the one torus
times the real line. Choosing the initial conditions �0 and J0 in the interval [0, 2π ] and R,
respectively we have

J = J0 + εw(t) �(t) = �0 + J0t + ε

∫ t

0
w(s) ds. (47)

The fluctuating parts of J and � are a Wiener process and its integral, respectively. The action
fluctuates and its variance σ11 grows as εt1/2 so that at any time negative values of the action
are possible. However, if an initial distribution (4), with 	(J ) given by (2) peaked at J∗ > 0,
has a small width σ � J∗, then the measure of the real negative axis R− computed from the
p.d.f. at time t is negligible as long as t � J 2

∗ /ε2. In this time range the model is adequate to
describe the diffusion of a noisy anharmonic oscillator. Denoting by x1(t) = �(t)−�0 −J0t

and x2(t) = J (t) − J0 the fluctuating parts of the angle and action variables, the coefficients
of the matrix σ 2

ij (t) = 〈xi(t)xj (t)〉, are given by

σ 2
11(t) = ε2t, σ 2

22(t) = ε2

3
t3, σ 2

12(t) = ε2

2
t2. (48)

4.2. Solutions of the Fokker–Planck equation

Letting A be the matrix whose inverse is defined by (A−1)ij = 2σ 2
ij and x = (x1, x2) be

the vector whose elements are the fluctuating parts of the angle and the action, the Gaussian
probability density function of the process defined by equation (46) reads

ρ(�, J, t) = 1

π
√

det A(t)
exp(−xA(t)x), (49)
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and satisfies the Fokker–Planck equation
∂ρ

∂t
+ J

∂ρ

∂�
= ε2

2

∂2ρ

∂J 2
, (50)

which is not separable. The marginal distributions ρ1(�, t) and ρ2(J, t) obtained by
integrating ρ with respect to � and J , respectively, satisfy the following equations:

∂ρ1

∂t
+ J0

∂ρ2

∂�
= ε2

2

∂2ρ1

∂�2

∂ρ2

∂t
= ε2

2

∂2ρ2

∂J 2
. (51)

Bringing the distribution from R
2 to the cylinder, namely rendering periodic its dependence

in �, we get

ρ(�, J, t) = exp
(− (J−J0)

2

2ε2t

)
√

2πε2t
× 1

2π

(
1 + 2

∞∑
k=1

e− 1
24 k2ε2t3

cos k

(
� − �0 − J + J0

2
t

))
.

(52)

5. Decoherence in the presence of noise

In order to evaluate the decoherence process when the filamentation and randomization
simultaneously act, we consider the action average of the density ρ at time t. We choose
an initial action density ρ0 of class Cn−1 according to (2) or a Gaussian, both peaked at
J = J∗. In order to perform the computation it is convenient to introduce the following
notation:

Gε(�, J ; t) = e− J2

2ε2 t√
2πε2t

1

2π

+∞∑
k=−∞

e− 1
24 k2ε2t3

eik�, (53)

where Gε(�, J ; 0) = δ(�)δ(J ). The fundamental solution given by (52) can be written as

Gε

(
� − �0 − J + J0

2
t, J − J0; t

)
. (54)

The fundamental solution satisfies the group property and in the limit t = 0 becomes
δ(� − �0)δ(J − J0). As in the noiseless case we evaluate the � marginal distribution
ρ1(�, t) by taking the average of the p.d.f. with respect to J :

ρ1(�, t) =
∫ +∞

−∞
dJ

∫ +∞

−∞
dJ0

∫ 2π

0
d�0Gε

(
� − �0 − J + J0

2
t, J − J0; t

)
ρ0(�0, J0).

(55)

The integration over J is elementary and reads∫ +∞

−∞
dJ

e− (J−J0)2

2ε2 t√
2πε2t

e−i k
2 J t = e−i k

2 J0t e− k2ε2 t3

8 . (56)

After integrating over �0 and denoting with fk the Fourier coefficients of f (�) and choosing
the initial action distribution (2) we obtain for any n � 0

ρ1(�, t) = f0 +
∑
k �=0

fk e−k2ε2t3/6 eik(�−J∗t)(
1 + i kt

αn+

)n+1 , (57)

where n+ is defined as in (8). The result is the same as in the deterministic case, see
equation (8), with ω0 = 0, ω1 = 1 except for the damping factor e−k2ε2t3/6 affecting the
Fourier coefficient fk . Having chosen ω1 = 1 the decoherence time tdec = αn

1/2
+ . For

the Gaussian initial condition we have ρ = f0 +
∑

k �=0 fk e−k2ε2t3/6 e−k2σ 2t2/2 eik(�−J∗t), and the

decay of the Fourier component k at time tdec = σ−1 due to filamentation is e−k2/2; the decay
due to noise is e−k2ε2σ−3/6.
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6. Echo in the presence of noise

The density at time τ + 0 right after the standard map kick is given by

ρ(�, J ; τ + 0) = ρ(� + J + λg(�), J + λg(�); τ − 0)

=
∫ +∞

−∞
dJ0

∫ 2π

0
d�0Gε(� + J + λg(�)

− J + λg(�) + J0

2
τ − �0, J + λg(�) − J0; τ)ρ0(�0, J0). (58)

Finally, the density at t > τ integrated over the action variable J is given by

ρ1(�, t) =
∫ +∞

−∞
dJ

∫ +∞

−∞
dJ1

∫ 2π

0
d�1Gε

×
(

� − J + J1

2
(t − τ) − �1, J − J1; t − τ

)
ρ(�1, J1; τ + 0). (59)

Even though the integrations over J and J1 may be carried out exactly it is convenient to use
the following approximations in evaluating G:

Gε

(
� + J − J + J0

2
τ − �0, J − J0; τ

)
 Gε(� + J − τJ − �0, J − J0; τ)

 Gε(� − Jτ − �0, J − J0; τ), (60)

valid for small noise amplitude ε and large delay time. Indeed for ε → 0 the fundamental
solution reduces to δ(� + J − 1

2 (J + J0)τ − �0)δ(J − J0). As a consequence, the first δ

argument reduces to � − J (τ − 1) − �0  � − Jτ − �0 since τ � 1.
The result is exact in the limit ε → 0 and τ → ∞. We shall consider this limiting case

by keeping τε � 1 in order to analyse the echo effect. We suppose that the amplitude λ of the
kick is very small, that is, τ is large so that decoherence has occurred. Moreover, we suppose
that λτ is still small so that we can expand the solution in λ retaining only the λτ term. As a
consequence we can write

Gε

(
� + J + λg(�) − J + λg(�) + J0

2
τ − �0, J + λg(�) − J0; τ

)
 Gε(� − Jτ − λτg(�) − �0, J + λg(�) − J0; τ)

 Gε(� − Jτ − �0, J − J0; τ) + λτg(�)
∂Gε

∂�0
(� − �0 − Jτ, J − J0; τ)

 Gε

(
� − J + J0

2
τ − �0, J − J0; τ

)

+ λτg(�)
∂Gε

∂�0

(
� − J + J0

2
τ − �0, J − J0; τ

)
, (61)

where we have dropped in the expansion the terms of order λ retaining only the term of order
λτ . Inserting (61) into (58) and integrating by parts with respect to �0, we shift the derivative
from Gε to ρ0 with no additional term since the finite factor vanishes due to the periodicity
in �0. Inserting the result into (59) and integrating over J , we obtain the angular distribution
ρ1(�, t) that reads

ρ1(�, t) =
∫ +∞

−∞
dJ

∫ +∞

−∞
dJ0

∫ 2π

0
d�0Gε

(
� − J + J0

2
t − �0, J − J0; t

)
ρ0(�0, J0)
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− λτ

∫ +∞

−∞
dJ

∫ +∞

−∞
dJ1

∫ +∞

−∞
dJ0

∫ 2π

0
d�1

∫ 2π

0
d�0

×Gε

(
� − J + J1

2
(t − τ) − �1, J − J1; t − τ

)

×Gε

(
�1 − J1 + J0

2
τ − �0, J1 − J0; τ

)
g(�1)

∂ρ0

∂�0
(�0, J0). (62)

The first contribution on the right-hand side of (62) represents the ‘free’ evolution which
occurs in the absence of the kick at t = τ and was written by using the group property of
the fundamental solution. The second term takes into account the kick effect and describes
the echo effect. Moreover, in the limit ε → 0 we recover the result of the noiseless case.
Recalling that ρ = (f0 + f (�))	(J ) and denoting by fk and gk the Fourier components of
f (�) and g(�) the integration over the angular variables gives

ρ1(�, t) = ρ
(0)
1 (�, t) − λτ

+∞∑
k,k′=−∞

eik�

∫ +∞

−∞
dJ0	(J0)Ck,k′(J0; t, τ )

× 1

(2π)2

∫ 2π

0
d�1

∫ 2π

0
d�0 e−i(k−k′)�1 e−ik′�0g(�1)f

′(�0), (63)

where by ρ
(0)
1 (�, t) we denote the unperturbed term (λ = 0) given by the first term in the

rhs of equation (62) or (55), whose explicit expression is given by equation (57) for the initial
condition (4). The function Ck,k′(J0; t, τ ) is defined by

Ck,k′(J0; t, τ ) = e−ε2k2 (t−τ)3

24 e−ε2k′2 τ3

24

∫ +∞

−∞
dJ

∫ +∞

−∞
dJ1

e− (J−J1)2

2ε2(t−τ)√
2πε2(t − τ)

e− (J1−J0)2

2ε2τ√
2πε2τ

× e−ik J+J1
2 (t−τ) e−ik′ J1+J0

2 τ = e−ik(t−τ)J0−ik′τJ0Ak,k′(t, τ ),

where

Ak,k′(t, τ ) = exp

{
−ε2

6
[k2(t − τ)3 + k′2τ 3 + 3k2τ(t − τ)2 + 3kk′τ 2(t − τ)]

}
, (64)

We observe that Ak,k′ = A−k,−k′ , and it can be proved that for t � τ the expression within the
square brackets is positive even when kk′ < 0. We make the following choice for the angular
functions,

f (�) = sin(��), g(�) = sin(m�), (65)

and, after performing the angular integration, from the second line of equation (63) we obtain
�/(4i)[δk′,�(δk,m+� − δk,�−m) + δk′,−�(δk,m−� − δk,−m−�)]. Taking into account the relation
A−k,−k′ = Ak,k′ , we finally obtain

ρ1(�, t) = ρ
(0)
1 (�, t) − τλ�

2
Am+�,�(t, τ )Im

{
ei�(m+�)

∫ +∞

−∞
dJ0 e−iJ0((m+�)t−mτ)	(J0)

}

− τλ�

2
Am−�,−�(t, τ )Im

{
ei�(m−�)

∫ +∞

−∞
dJ0 e−iJ0((m−�)t−mτ)	(J0)

}
. (66)

From the final expression it is evident that the echo signal is the same as in the noiseless
case, see equation (23), except for the attenuation factor Am−�,−�(t, τ ) depending on the noise
amplitude.

For instance, in the standard case m = 2, � = 1 the attenuation factor in the second

term is A1,−1(t, τ ) = e− ε2

6 [2(t−τ)3−(t−2τ)3] for t > τ and at the echo time t = 2τ it becomes
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Figure 3. Left figure: the same as figure 2 right frame for λ = 0.02. Central figure: echo signal
in the presence of a noise of amplitude ε with D = ε2 = 10−6. Right figure D = 6 × 10−6.

A1,−1(τ, τ ) = e−ε2τ 3/3. In figure 3 we compare the echo for the same parameters as in
figure 2 except for the amplitude of the standard map kick where we choose λ = 0.02 so
that the approximation made is accurate, as shown by the left panel. By choosing ε = 10−3

and ε = √
610−3 the echo amplitude is reduced by e−1/3 ∼ 72% and e−2 ∼ 13%, respectively4.

7. Numerical schemes for a generic Hamiltonian with white noise

The transport process for a Hamiltonian system with a weak noise can be analysed by the
Monte Carlo method (MCM) sometimes denominated by Brownian molecular dynamics, by
the stochastic Liouville equation (SLE) or by the Fokker–Planck equation (FPE). Given the
Hamiltonian

H = H0(x, t) + εξ(t)H1(x), (67)

where x is a point in the phase plane and ξ(t) is a white noise, the stochastic Liouville equation
reads [17]

∂ρ̂

∂t
(x, t; ξ) +

(
DH0 + εξ(t)DH1

)
ρ̂(x, t; ξ) = 0, (68)

where DH = [., H ] denotes the Lie derivative expressed in terms of the Poisson bracket.
The average over the stochastic process ρ(x, t) ≡ 〈ρ̂(x, t; ξ)〉ξ satisfies the Fokker–Planck
equation [16]:

∂ρ

∂t
(x, t) + DH0ρ(x, t) = ε2

2
D2

H1
ρ(x, t). (69)

The procedure to derive equation (69) from (68) is outlined in [17].

7.1. Monte Carlo methods

The p.d.f. for the stochastically perturbed Hamiltonian (67) is obtained by approximating
the initial density with N randomly generated points and considering their time evolution

4 There is a slight difference apart from the attenuation factor Ak,k′ (t, τ ) in (66) with respect to (23). Indeed in
(23), for �(J ) = J , the argument of the exponentials are (m ± �)� − J∗[(m ± �)t − mτ − �], whereas in (66) after
integration over J0 the last � is missing. Similarly in the denominators of (23) we have (m ± �)t − mτ − �, whereas
in (66) the last � is missing. This is due to replacing J (τ − 1) with Jτ in (61). The discrepancy between (66) and
(23) for t = τ amounts to replacing τ ± 1 with τ .
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according to Langevin’s equations of motion, with N distinct realizations of the noise. The
relative error on the density due to statistical fluctuations decreases as N−1/2. We restrict the
phase space to the unit square [0, 1]2 in the coordinates x = �/(2π), y = J/Jmax, where
Jmax � J∗ + σ and J∗, σ are the peak position and the half width of the initial distribution.
The analysis is limited to a time interval [0, T ] such that the action spread due to the noise is
small and the measure of the unit square is 1 up to negligible corrections. In order to estimate
the statistical error we consider a regular lattice formed by cells of side �. The exact measure
and the average density ρi,j of the cell ci,j are given by

µ(ci,j ) ≡ �2ρi,j =
∫

ci,j

ρ(x, y) dx dy. (70)

Approximating the density with N randomly generated points weighted by ρ, we denote by
Nij the number of points falling into the cell cij . We denote by nij = 〈Nij 〉 the average number
of points falling in the cell cij , computable with a large number of realizations, and by �Nij

their variance, which are given by

ni,j = Nµ(ci,j ) �Ni,j = (ni,j )
1/2. (71)

Having fixed the number N we let � vary from N−1/2 to 1. In the former case the fluctuation of
the measure of any cell is comparable with the measure of the cell if the density varies gently
on the unit square. This is the limit scale one can reach, since the noise and the signal are
comparable. Each Monte Carlo generation provides a set of stochastic variables corresponding
to the measures of the cells

µξ(ci,j ) = µ(ci,j ) + �µ(ci,j )ξi,j , (72)

where ξi,j are random independent variables of zero mean and unit variance. The variance of
the measure of a cell is given by

�µ(ci,j ) = �Ni,j

N
= �(ρi,j )

1/2

N1/2

�ρi,j

ρi,j

= �µ(ci,j )

µ(ci,j )
= 1

�N1/2(ρi,j )1/2
. (73)

If the distribution varies smoothly ‖grad ρ‖ < 1, then �ρ is an adequate estimate of the error
on the density. In this case ρ is close to 1 and the error �ρ/ρ is comparable to the lattice
spacing if � = N−1/4. If the gradients can reach large values, as in a filamented distribution,
then the error is more conveniently defined in terms of the variance of the gradient averaged
on a cell, see appendix A,

�∗ρi,j

ρi,j

≡ 2�‖�〈grad ρ〉ci,j
‖

ρi,j

= 1

�N1/2(ρi,j )1/2

‖〈grad ρ〉ci,j
‖

ρi,j /�
. (74)

When rapid oscillations are superimposed to a smooth background the error estimate given
by (73) is adequate until we reach the oscillations scale where it has a sudden rise and the
estimate (74) is more appropriate. For instance, with N = 106 and � = 10−2 the relative error
is acceptable in the case of small gradients, but becomes of order 1 for gradients of order 10
as it is the case of figure 4 (left), where the filamented structure can hardly be detected in the
Monte Carlo simulation. Taking a one-dimensional distribution, the statistical error decreases.
Indeed letting ρ(x) be the density and ρi its average on a rectangle ci of base � and unit height
the errors on the corresponding densities are

�ρi

ρi

= 1

�1/2N1/2(ρi)1/2

�∗ρi

ρi

= �ρi

ρi

‖〈grad ρ〉ci
‖

ρi/�
. (75)

Taking the average over the whole phase space the situation further improves and the error
becomes N−1/2 for a smoothly varying function (‖grad ρ‖ < 1), see appendix A, and N = 106

is fully adequate. For a distribution filamented on a scale smaller than 10−2 with density jumps
over ten times the average local density, as in figure 4 left, the choice � = 10−3 and N = 108

would not yet provide a sufficient accuracy to resolve the filaments.



Hamiltonian dynamics with a weak noise and the echo effect for the rotator model 11433

7.2. The stochastic Liouville equation

In the case of a highly filamented phase space an alternative scheme consists in approximating
the phase space density ρ̂(x, t; ξ), which satisfies the stochastic Liouville equation. Given
the initial distribution for any realization of the noise we obtain a different density function
at time t. Since the flow preserves the volumes the density at time t at a point x is equal to
the initial density at the back propagated point x0. Denoting by St,t0 the evolution operator
from t0 to t it follows that ρ̂(x, t; ξ) = ρ0(St0,tx), where x = St,t0 x0 and St,t0St0,t = I . The
error on the density at time t is only due to the integrator of the Langevin equation. Using a
splitting method and a coordinate system where H1 is a function of q or p only, the integration
scheme is straightforward and the related error is controlled by the size of the integration step.
To obtain the value of the p.d.f. ρ(x, t) it is sufficient to repeat the computation for N distinct
realization of the noise and to take the average. The statistical error N−1/2 can be made small
enough to resolve a small region highly filamented, since we can limit the calculation to a
small number of points choosing a very large value of N.

7.3. The Fokker–Planck equation

If we need to follow the evolution of the p.d.f. on the whole phase space and continuously in
time then it is convenient to follow another strategy based on the solution of the Fokker–Planck
equation. If H0 and H1 have no explicit time dependence the solution of equation (69) reads

ρ(x, t) = e−tDH0 +t ε2

2 D2
H1 ρ0(x), (76)

and using the splitting

ρ(x, t) = e− 1
2 �tDH0 e�t ε2

2 D2
H1 e− 1

2 �tDH0 ρ(x, t − �t), (77)

the error is O(�t)3. Using the unsymmetrized splitting the error is O(�t)2. The deterministic
evolution by H0 is such that the value of ρ on a regular grid at time �t is equal to the values
of ρ0 on a slightly distorted grid. An interpolation is needed to compute them from the values
of ρ0 on the regular grid.

The biquadratic interpolation suggested by Warnock and Ellison, see equation (42) in
[15], appears to be adequate, whereas the simple bilinear interpolation is not enough accurate.
The diffusive contribution is then computed by using any stable finite difference algorithm
on the grid like a Crank–Nicholson scheme. Explicit schemes are also stable when the noise
amplitude is very small. After a new deterministic back propagation by �t/2 the desired value
of ρ(x,�t) at the grid points is obtained.

The choice of the time step �t is a crucial issue. Indeed to reach a time t the number
m of required iterations affects the interpolation error which increases monotonically with m
and dominates the error due to backwards symplectic integration. Conversely, the error
due to the Fokker–Planck integration decreases monotonically with m. For any t there
appears to be a unique optimal choice of �t which minimizes the error [21]. Choosing
a sufficiently fine grid and using an optimal integration step accurate results are obtained
(typically t = 100,�t = 0.1, � = 10−3).

8. HERA-p RF cavities and the noisy pendulum

We discuss a physical application, that motivates the mathematical investigation on the
decoherence and echo for the noisy oscillator model, developed in the previous sections.



11434 G Turchetti et al

-3

-2

-1

0

1

2

3

-1 -0.5 0 0.5 1

p

q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-3 -2 -1 0 1 2 3

F
(0

,P
)

P

Figure 4. Left: plot at time t = 2τ obtained with a symplectic integrator of the pendulum
Hamiltonian (79), from a Monte Carlo generated initial set corresponding to a Gaussian
ρ0(q, p) = 0.563 exp(p2/0.8 + (q − 0.05)2/0.4) distribution. Right: distribution on the q = 0
line ρ(0, p, 2τ) obtained by propagating the initial density assigned initially at 5 × 104 equally
spaced points on the interval −3 < p < 3 of the q = 0 line. Such a fine grid is necessary to
resolve the filaments in the queues.

In HERA two RF systems are used (52 MHz, 208 MHz) and the longitudinal dynamics
(synchrotron motion) of the protons is described by the Hamiltonian

H = hε
p2

2
− eV1m1

2πE0
cos(m1q) − eV2m2

2πE0
cos(m2q), (78)

where q is the particle’s phase deviation, p = (p′ −p0)/p0 is the relative particle’s momentum
deviation with respect to the synchronous momentum po. The time derivatives are q̇ = dq/dt

and ṗ = dp/dt with t = 2πn, where n is the number of revolutions. h = 1100 is the harmonic
number, ε = 0.0014 is the momentum compaction factor, E0 = 820 GeV is the energy of
the synchronous particle, m = 1 for the cavities at 52 MHz and m = 4 for the cavities at
208 MHz, eV1 = 100 KeV and eV2 = 320 KeV are the applied voltages.

Changing to a new set of scaled variables and by adding the noise we obtain a noisy
pendulum which describes RF cavities of HERA-p. The corresponding Hamiltonian reads

H = p2

2
− a1 cos q − a2

4
cos 4q − εqξ(t), (79)

where a1 = 1.2875, a2 = 4.1201. The echo can also be observed in the longitudinal case
applying a RF phase shift and a RF amplitude jump, which play the role of the dipole and
quadrupole kicks, respectively. The longitudinal echo for the synchrotron motion of the
protons in HERA is governed by the equations

q̇ = p ṗ = −a1 sin q − a2 sin 4q. (80)

As an initial distribution we consider an anisotropic Gaussian translated by ε along the
q axis ρ0 = (2πσqσp)−1 exp

(− (q−ε)2

2σ 2
q

− p2

2σ 2
p

)
, where σqq = 0.2, σpp = 0.4 and ε = 0.05.

The decoherence process due to filamentation is shown in figure 4, where the evolution of
the initial Gaussian distribution is computed by the Monte Carlo method and by solving the
Liouville equation on a fine grid.



Hamiltonian dynamics with a weak noise and the echo effect for the rotator model 11435

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

<
q>

/e
ps

TIME

LIOUVILLE FORWARD
MONTECARLO

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

70 75 80 85 90

<
q>

/e
ps

TIME

LIOUVILLE FORWARD
MONTECARLO

Figure 5. Echo induced by a kick of amplitude λ = 0.2 at time τ = 40 in the absence of noise
(D = 0). Left: the blue line gives the time evolution of the average 〈q〉/ε obtained with the phase
space distribution resulting from a Monte Carlo generated initial set of 106 points; the red line gives
for comparison the same average computed by solving the Liouville equation (back propagation
and biquadratic interpolation) on a grid with 103 × 103 points with �t = 0.1. Right: enlargement
of the left figure.
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Figure 6. Left: distribution ρ(0, p) at time 2τ for the same kick and the same initial condition
as figure 5 in the presence of a noise with D = ε2 = 10−5. Right: time evolution of the average
〈q〉/ε.

The initial anisotropic distribution undergoes a filamentation until a kick is applied. At
time t = τ = 40 a kick λ = 0.2 is applied in the amplitude of the first RF cavity at 52 Mhz.
The choice of these parameters has been done for consistency with those used in [20].

q(τ + 0) = q(τ − 0) p(τ + 0) = p(τ − 0) − λ sin q(τ − 0). (81)

Due to the coherence in the filamented distribution, an echo of the signal at time τ is
observed at t = 2τ . The agreement between the Monte Carlo calculation with N = 106

points and the evolution of the distribution function based on the Liouville equation is quite
good as shown by figure 5. The effect of a small noise is shown in figures 6–8, where
the p.d.f. ρ is obtained by solving the Fokker–Planck equation with the unsymmetrized
splitting method (back propagation on the grid for the deterministic component and finite
difference for the diffusive component). By progressively increasing the noise amplitude from
ε = D1/2 = 10−5/2 the distribution at time t = 2τ becomes smoother, whereas the echo signal
is weakened. When ε = D1/2 = 10−3/2 the distribution is smooth and the echo signal has
disappeared.
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Figure 7. The same as figure 5 for D = 10−4.
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Figure 8. The same as figure 5 for D = 10−3.

9. Conclusions

We have proposed a simple Hamiltonian model, the free rotator, to analyse the effect of a weak
noise on the evolution of a given initial distribution. For zero noise the phase space evolution is
a shear flow on the cylinder, and the angular correlations of any initial distribution are lost due
to filamentation. The decay law depends on the smoothness of the initial action distribution
and varies from t−1, for a discontinuous distribution, to t−n−2 for smooth distributions of
class Cn to exponential for real analytic distributions like a Gaussian. The residual coherence
produces the echo of any impulse given at time τ . In the presence of noise the decoherence
follows an exponential law and the angular correlations decay as exp(−ε2k2t3/6) for
the Fourier components k. If ε is small enough the attenuation does not prevent to observe the
echo signal whose amplitude is proportional to λτ . In the classical dipole–quadrupole kick the
amplitude of the signal at the echo time t = 2τ is exp(−ε2τ 3/3) times the echo amplitude in
the absence of noise and it is readily seen above which level noise the echo signal disappears.
The exactly solvable model applies with some caution to the anharmonic oscillator as well,
provided that the support of the initial distribution is far enough from the origin. This allows
us to deal with the rotator dynamics defined on the cylinder R × T, since the measure of
the lower cylinder R− × T remains negligible. For more generic integrable models having
several equilibria like the pendulum or quasi integrable, such as the pendulum with a slowly
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and periodically varying amplitude, we have compared three different approaches based on
the Monte Carlo method, the stochastic Liouville equation and the Fokker–Planck equation.

For the noisy rotator we solved analytically the Fokker–Planck equation also when a
standard map kick of small amplitude is applied, providing the expression of the exponential
attenuation factor introduced by the noise. In order to analyse the weak noise effect on
more realistic models, such as a pendulum which describes the potential of a RF cavity, a
numerical scheme based on a splitting method has been developed. Using the back propagation
with biquadratic interpolation for the integrable unperturbed Hamiltonian and an implicit finite
difference scheme to solve the Fokker–Planck equation for the noisy component, a satisfactory
accuracy was obtained for discretization values requiring a few hours of CPU time to investigate
the echo effect.

The Monte Carlo method is not adequate to deal with a highly filamented distribution,
whereas the stochastic Liouville equation allows us to obtain locally the desired accuracy. The
error analysis shows that the interpolation errors accumulate and increase with (�t)−1 whereas
the Fokker–Planck integration error increases with �t so that an optimal time step is found
when the errors are comparable. An application to a pendulum model with the parameters of
HERA-p gives an estimate of the noise level above which the echo signal is destroyed.
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Appendix A. Statistical errors in the Monte Carlo method

A.1. Error from the density gradients

In order to give a better estimate of the statistical error when high-density gradients are present
we consider the average of the gradient in a cell cij

〈grad ρ〉cij
=
〈
∂ρ

∂x

〉
cij

ex +

〈
∂ρ

∂y

〉
cij

ey, (A.1)

where〈
∂ρ

∂x

〉
cij

= 1

2�

[∫
cij

ρ(x + �, y) dx dy −
∫

cij

ρ(x − �, y) dx dy

]
+ O(�2)

= ρi+1,j − ρi−1,j

2�
+ O(�2). (A.2)

As a consequence we obtain the statistical variance on the gradients, by using �ρij = �−2�µij ,
where �µij is given by (73)

�

〈
∂ρ

∂x

〉
cij

= �ρi+1,j − �ρi−1,j

2�
+ O(�2) = (ρi+1,j )

1/2 − (ρi−1,j )
1/2

2�2N1/2
+ O(�2). (A.3)
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We note that

(ρi+1,j )
1/2 − (ρi−1,j )

1/2 =


(∫

ci,j

ρ(x + �, y) dx dy

)1/2

−
(∫

ci,j

ρ(x − �, y) dx dy

)1/2



= �

(ρi,j )1/2

∫
ci,j

∂ρ

∂x
(x, y) dx dy + O(�3). (A.4)

We define a new statistical variance of the density related to the variance of the gradient
according to

�∗ρi,j = 2�‖�〈grad ρ〉cij
‖ = ‖〈grad ρ〉cij

‖
N1/2(ρi−1,j )1/2

. (A.5)

Finally, the new relative statistical error on the density, which takes into account the rapid
density variations in phase space is related to the previous one by

�∗ρi,j

ρi,j

= 1

�N1/2(ρi,j )1/2

‖〈grad ρ〉cij
‖

ρi,j /�
≡ �ρi,j

ρi,j

‖〈grad ρ〉cij
‖

ρi,j /�
. (A.6)

The last factor taking the gradients into account can be very large in the case of rapidly
varying functions, like in filamented beam, and explains why the Monte Carlo approach can
fail even though for the same parameters � and N it may be adequate to describe a smooth
distribution. In the case of a one-dimensional distribution a similar definition holds

�∗ρi

ρi

= 1

�1/2N1/2(ρi)1/2

|〈∂ρ/∂x〉ci
|

ρi/�
≡ �ρi

ρi

|〈∂ρ/∂x〉ci
|

ρi/�
. (A.7)

A.2. Error on phase space averages

Letting f (x, y) be a smooth function such that |grad f | �
√

2 and denoting by fi,j its value
at the centre of the cell ci,j , the following estimate within the cell |f (x, y) − fi,j | � � holds.
As a consequence the exact phase space average reads

F =
∫

f (x, y)ρ(x, y) dx dy =
∑
i,j

fi,jµ(ci,j ) + O(�), (A.8)

whereas for a Monte Carlo sampling we have

F(ξ) =
∑
i,j

fi,jµξ (ci,j ) + O(�), (A.9)

where µξ(ci,j ) is given by equation (72). As a consequence by using equation (61) we readily
find that the mean 〈F(ξ)〉 of the Monte Carlo generation is F up to a remainder of order �

whereas the variance is

�F = 〈(Fξ − F)2〉1/2 =

∑

i,j

f 2
i,j (�µ(ci,j ))

2 + O(�2)




1/2

=

 1

N

∑
i,j

f 2
i,jµ(ci,j ) + O(�2)




1/2

. (A.10)

Since � is arbitrary we can let � → 0 and the error average of f due to the Monte Carlo
sampling is

�F = 〈f 2〉1/2

N1/2
. (A.11)
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Appendix B. Solutions of the Fokker–Planck equation

Denoting by �̃(t) = �(t)−〈�(t)〉 and J̃ (t) = J (t)−〈J (t)〉 the fluctuating parts of the angle
and action variables, the coefficients of the variance matrix are

σ 2
J (t) = 〈J̃ 2

(t)〉 = ε2〈w2(t)〉 = ε2t, (B.1)

σ 2
�(t) = 〈�̃2(t)〉 = ε2

〈(∫ t

0
w(s) ds

)2
〉

= ε2

3
t3, (B.2)

σ 2
�J (t) = 〈�̃(t)J̃ (t)〉 = ε2

〈
w(t)

∫ t

0
w(s) ds

〉
= ε2

2
t2. (B.3)

We observe that the Langevin equation is linear. In this case the probability distribution ρ̂ for
the fluctuating parts is Gaussian and the distribution is given by (49) where the matrix A is the
inverse of the correlation matrix 2σ 2

ij :

A−1(t) = 2σ 2(t) = ε2

(
2t t2

t2 2
3 t3

)
A = 1

ε2

( 2
t

− 3
t2

− 3
t2

6
t3

)
. (B.4)

Letting x = (�̂, Ĵ ) the equation satisfied by the density ρ̂(x, t) is

∂ρ̃

∂t
= 1

2

∑
j

dσ 2
ij (t)

dt

∂2ρ̃

∂xi∂xj

. (B.5)

As a consequence the probability density can be written as

ρ̃(�̃, J̃ , t) = 1

π

√
3

t2
exp

(
− 2

ε2t
J̃

2
+

6

ε2t2
�̃J̃ − 6

ε2t3
�̃2

)
. (B.6)

Finally, the distribution in the original variables reads

ρ(�, J, t) = 1

π

√
3

ε2t2
exp

[
− (J − J0)

2

2ε2t

]
exp

[
− 6

ε2t3

(
� − �0 − J + J0

2
t

)2
]

, (B.7)

and satisfies the Fokker–Planck equation given by (50).
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